Demand-driven Delivery Staff Rostering: Preliminary Results

Andrea Rendl and Christina Burt
Satalia

Workshop on Modelling and Reformulation ModRef-2018
Context of this work: Delivery company

- Company sells goods that require a **manual setup**
- Company delivers with their **own fleet and staff**
- Customers **select** delivery date and time window
Cyclic Roster for Drivers

week 1

shift pattern 1

shift pattern 2

week 2
Van hours and resulting delivery capacity
Problem: capacity from roster does not match demand

Possible deliveries versus real demand

- van-hours
- possible deliveries
- real demand
Our goal: find a roster that matches the real demand
Mathematical Model
Parameters

- Shift patterns (weeks) S
- Drivers / vans V
- Estimated demand per weekday (in orders) O
Constants (1/2)

- Time factor τ
- Time units $T = \{1.. 24*\tau\}$
- Stem time t_{stem}
- Lunch break duration t_{lunch}
Constants (2/2)

- Max working hours
 - t_{daily}
 - t_{weekly}

- Paid working hours t_{paid}

- Shift constants
 - min/max shift length
 - Earliest start time
 - Latest end time

- o in \mathbb{R}^+
 average orders delivered per van per hour

- vv^s_v in $\{0,1\}$
 1 if van v is assigned to shift pattern s
Main Decision variables

- s_{d}^{s} in T
 Start time of shift on weekday d, for shift pattern s

- e_{d}^{s} in T
 End time of shift on weekday d, for shift pattern s
Helper Decision variables

- l^s_d in T
 length of shift on weekday d, for shift pattern s

- w^s_d in $\{0, 1\}$
 1 if weekday d in shift pattern s is a working day

- vh_d in $\{0 .. T_{max}\}$
 The number of hours all vans are working on weekday d
“Objective” decision variables

- \(a_d \) in \(\mathbb{R}^+ \)
 The average number of orders delivered on weekday \(d \) (over all shift patterns)

- \(u_d \) in \(\mathbb{R}^+ \)
 Unmet demand (in orders) on weekday \(d \), over all shift patterns
Shift Constraints

- \(s^s_d \geq \text{earliestStartTime} \) \(\forall s,d \)
- \(e^s_d \leq \text{latestEndTime} \) \(\forall s,d \)
- \(e^s_d \geq s^s_d \) \(\forall s,d \)
- \(l^s_d = e^s_d - s^s_d \) \(\forall s,d \)
- \(l^s_d \leq M \times w^s_d \) \(\forall s,d \) with \(M \geq t_{\text{day}} \)
Working hour Constraints

- \[\sum_{s,d} \{ l^s_d \} - \sum_{s,d} \{ w^s_d \cdot t_{\text{lunch}} \} = t_{\text{paid}} \]
 The average number of working hours over all shift patterns must be equal to the number of paid hours.

- \[\sum_{d} \{ l^s_d \} - \sum_{d} \{ w^s_d \cdot t_{\text{lunch}} \} \leq t_{\text{week}} \quad \forall s \in S \]
 For each shift pattern, the maximal number of working hours is not exceeded.
2-day break Constraints

- \((w^s_{\text{Sat}} + w^s_{\text{Sun}} = 0) + (w^s_{\text{Sun}} + w^{s+1}_{\text{Mon}} = 0)\)

 \[+ (w^s_{\text{Mon}} + w^s_{\text{Tue}} = 0) = 1 \quad \forall \ s \in S - 1\]

- \((w^S_{\text{Sat}} + w^S_{\text{Sun}} = 0) + (w^S_{\text{Sun}} + w^1_{\text{Mon}} = 0)\)

 \[+ (w^S_{\text{Mon}} + w^S_{\text{Tue}} = 0) = 1\]

There is a two day break between each shift
Van hour Constraints

- \(vh_d = \sum_{s,v} \{ vv^s_v \cdot l^s_d \} \)

- \(- \sum_{s,d} \{ w^s_d \} \cdot \sum_{s,v} \{ vv^s_v \cdot t_{lunch} \} \) \(\forall d \)

Calculating the van hours \(vh_d \) for each weekday \(d \), over all shift patterns

- \(vv^s_v \in \{0,1\}: 1 \) if van \(v \) is assigned to shift pattern \(s \) (constant)
- \(w^s_d \in \{0,1\}: 1 \) if weekday \(d \) in shift pattern \(s \) is a working day
Serviced-orders Constraints

\[a_d = o \times (v_h_d - 2 \times t_{stem}) \times \{ \sum_{s,d} w^s_d \} \times \sum_{s,v} \{ v_v^s \} \] \quad \forall d

Calculating the average number of serviced orders (fleet capacity) \(a_d \) for each weekday \(d \): multiplying \(o \) with the net worked hours (removing the stem time)

- \(o \): average orders delivered per van per hour
- \(v_v^s \) in \(\{0,1\} \): 1 if van \(v \) is assigned to shift pattern \(s \) (constant)
- \(w^s_d \) in \(\{0, 1\} \): 1 if weekday \(d \) in shift pattern \(s \) is a working day
Unmet demand Constraints

- \(u_d = |O_d - a_d | \) \(\forall d \)

The unmet demand \(u_d \): the absolute value of expected order \(O_d \) minus the fleet capacity \(a_d \)

- \(O_d \) in \(\mathbb{R} \): expected number of orders on day \(d \)
- \(a_d \) in \(\mathbb{R} \): average fleet capacity in number of orders
Objective 1: minimize unmet demand

- Minimize p

Minimize the maximal unmet demand p

- $p \geq 0.0$
- $p \leq \text{max demand}$
- $p > u_d \quad \forall \ d$
Objective 2: weighted unmet demand

- Minimize $\sum_d \{ c_d \times u_d \}$

Minimize the unmet demand u_d weighted with c_d
Preliminary Results
MiniZinc model

- Implemented model in MiniZinc
- Model + data available on github (MIT license):
 https://github.com/angee/demand-shift-pattern

(link is also in the paper)
Problem instances

● Parameters:
 ○ Vans/drivers: 12, 24, 60
 ○ Shift patterns: 2, 4, 6
 ○ 2 Demand scenarios:
 ■ Linear-increase of demand over week
 ■ Peak demand on Thu/Fri

● Reflect real-world problem sizes
Experimental Setup

- MiniZinc v2.1.7
- Solvers:
 - Gecode
 - COIN-OR cbc
- Timeout: 300 seconds
- Default search
<table>
<thead>
<tr>
<th>Instance</th>
<th>Runtime (sec)</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gecode</td>
<td>cbc</td>
</tr>
<tr>
<td>v12 s6 linear</td>
<td>300.000</td>
<td>300.000</td>
</tr>
<tr>
<td>v24 s2 linear</td>
<td>0.027</td>
<td>0.353</td>
</tr>
<tr>
<td>v24 s4 linear</td>
<td>300.000</td>
<td>10.006</td>
</tr>
<tr>
<td>v60 s6 linear</td>
<td>300.000</td>
<td>241.377</td>
</tr>
<tr>
<td>v60 s2 linear</td>
<td>0.026</td>
<td>0.328</td>
</tr>
<tr>
<td>v60 s4 linear</td>
<td>300.000</td>
<td>11.444</td>
</tr>
<tr>
<td>v24 s6 linear</td>
<td>300.000</td>
<td>300.000</td>
</tr>
<tr>
<td>v12 s2 linear</td>
<td>300.000</td>
<td>0.317</td>
</tr>
<tr>
<td>v12 s4 linear</td>
<td>300.000</td>
<td>17.668</td>
</tr>
<tr>
<td>v60 s4 peak-thu-fri</td>
<td>300.000</td>
<td>2.404</td>
</tr>
<tr>
<td>v12 s2 peak-thu-fri</td>
<td>0.013</td>
<td>0.292</td>
</tr>
<tr>
<td>v60 s2 peak-thu-fri</td>
<td>0.014</td>
<td>0.327</td>
</tr>
<tr>
<td>v12 s4 peak-thu-fri</td>
<td>300.000</td>
<td>2.161</td>
</tr>
<tr>
<td>v24 s2 peak-thu-fri</td>
<td>0.047</td>
<td>0.284</td>
</tr>
<tr>
<td>v60 s6 peak-thu-fri</td>
<td>300.000</td>
<td>0.728</td>
</tr>
<tr>
<td>v12 s6 peak-thu-fri</td>
<td>300.000</td>
<td>1.16</td>
</tr>
<tr>
<td>v24 s4 peak-thu-fri</td>
<td>300.000</td>
<td>5.765</td>
</tr>
<tr>
<td>v24 s6 peak-thu-fri</td>
<td>300.000</td>
<td>0.962</td>
</tr>
</tbody>
</table>
Observations

- MIP solver outperforms CP solver
 - We do not use full power of CP
 - search strategy
 - global constraints

- Several optimal solutions cannot match demand
 - Working hour settings very conservative
Future Work

- Alternative **CP-style** formulation
 - Global constraints
 - Custom search strategies

- Include **optional constraints**
 - E.g. holidays every other Saturday

- Evaluate **constant settings**: with what settings can we find a solution to fully match the demand?